• Human Rights in Healthcare

    The Emerging Fields Project "Human Rights in Healthcare" focuses on highly relevant issues in the intersection of Human Rights and Medical Ethics in our Healthcare System.

  • Sustainable Business Models in Energy Markets

    A successful transformation of our energy system towards a smart energy system crucially depends on adequate investment incentives and the attractiveness of the business models of involved stakeholders. The aim of the research project “Sustainable Business Models in Energy Markets” is to develop new and urgently needed insight into the interaction between business models and regulation while taking into account the technological framework, and to allow a more informed discussion and advice regarding political and regulatory frameworks to ensure a successful transition towards a smart energy system.

  • Cell Cycle in Disease and Regeneration (CYDER)

    CYDER is an international interdisciplinary consortium of cell cycle experts, which aims at a better understanding of how cell cycle activation results in processes as diverse as cancer, regeneration and chronic organ failure. We pay particular attention to the discovery of novel mechanisms and unappreciated inter-cell type commonalities governing cell cycle exit and terminal differentiation. Ultimately, through these efforts, CYDER aims to generate an integrative view on cell cycle control and thus the foundation for the development of therapies for cell cycle-related diseases and the development of regenerative therapies.

  • Individualized Diagnostics and Therapy Monitoring in Motion (EFIMoves)

    InDiMo combines modern and multimodal medical technological approaches for a diagnostic workup both enabling a qualitative and quantitative assessment of impaired movement and allowing a sustainable benchmarking of medical treatment in neuronal or musculoskeletal movement disorders.

  • Ludwig Demling Center: Endoscopic Molecular Imaging

    Endoscopic molecular imaging represents a novel diagnostic procedure that enables us to identify mucosal lesions at an earlier stage and predict response to specific therapeutic strategies in different diseases.

  • Synthetic Biology

    The initiative "Synthetic Biology" aims at establishing an interdisciplinary research platform between the fields of Biology, Informatics, Mathematics, Material Science and Physics to understand biological phenomena at the nanometer scale, to explore rational metabolic engineering of living cells, and to create bio-inspired nano-devices. Such studies of synthetic systems will shed light on the workings of complex natural biological systems.


    Science and literature represent two diametrically opposed ways of viewing the world. In combination they could develop a productive potential. ELINAS aims at creating an interdisciplinary infrastructure for research, dedicated to the reciprocal transfer of knowledge between physics and literature. The project studies the importance of language and metaphors in physical research as well as the discursive and narrative modulations of scientific theories in literary texts.

  • Singlet Fission

    The process of singlet fission opens a way to generate two excited electrons from one photon and to increase the efficiency of solar cells. The project aims at the fundamental understanding of the physical process leading to a knowledge-based design of novel materials for solar cells.


    The goal of ADVENDO-LIFE at the interface between optical technology development and application in life sciences and medicine is the realization of a novel endoscopy-technology. Using laser-based multiphoton excitation of marker molecules, this technology aims to detect tumours and inflammatory processes in tissues already at the earliest possible time point and at the cellular level. As a second goal, multiphoton image data from diseased tissues will be systematically analyzed and implemented into a database describing the "ultrastructure of organ disease".